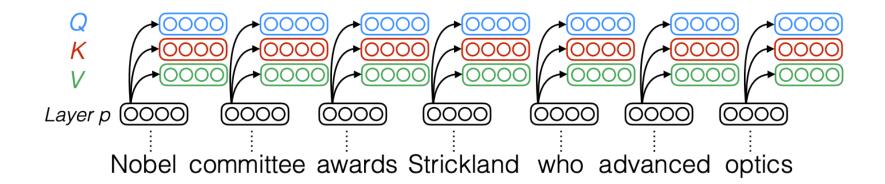
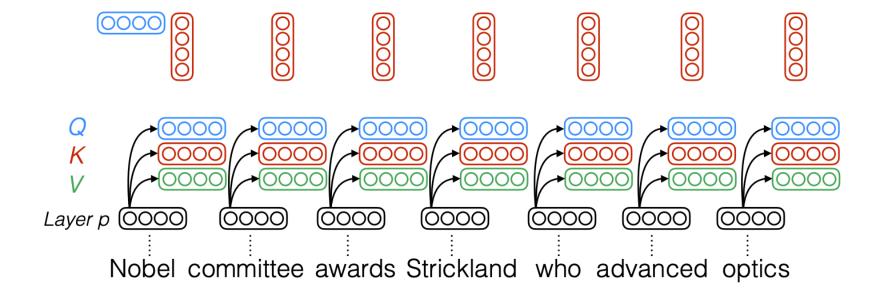
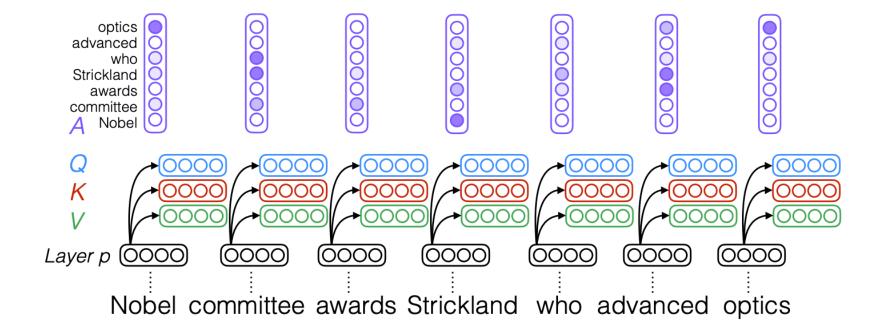
Introduction to Large Language Models

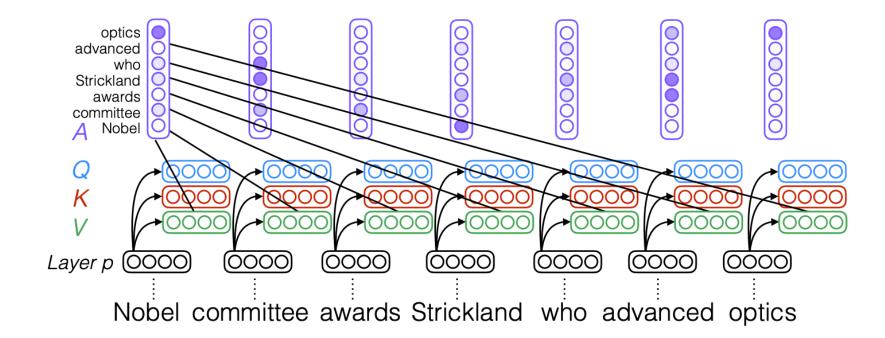
CONTENT

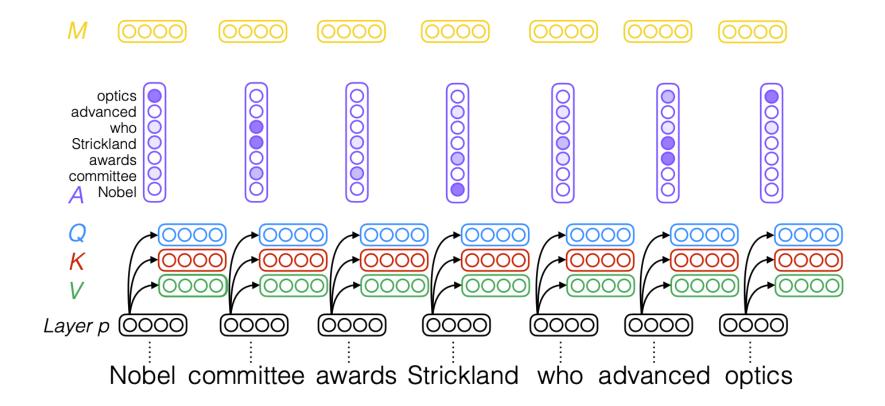
- Attention mechanism
 - Model structure
- Pre-training & IT & RLHF
 - Scaling
 - Multi Modal LLM

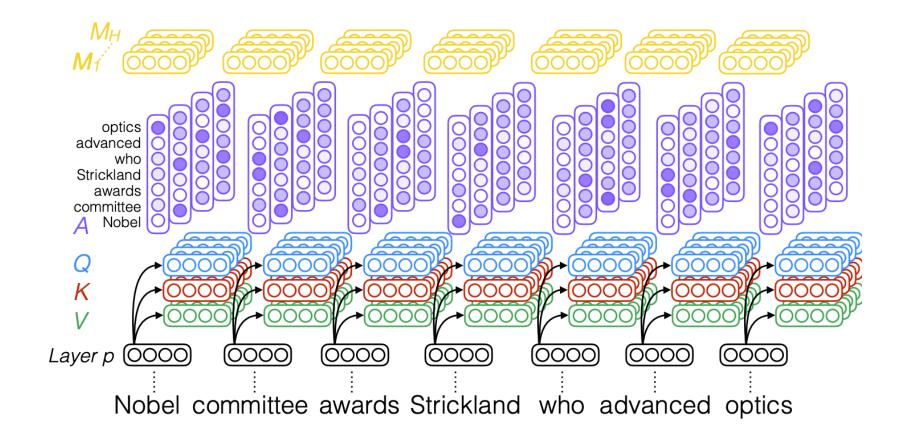


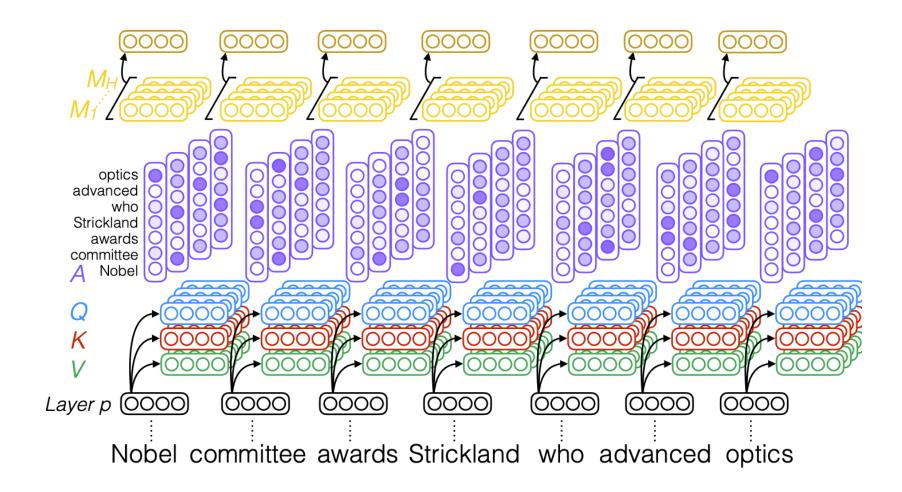


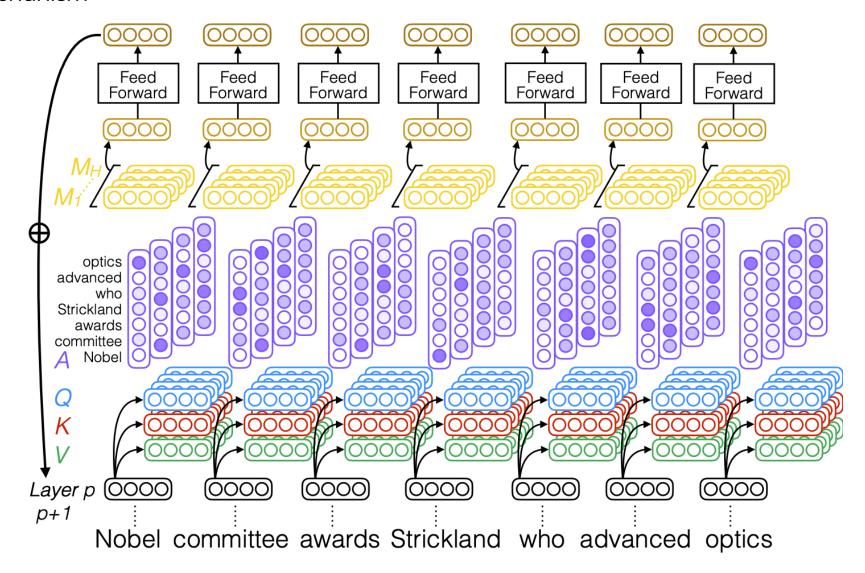


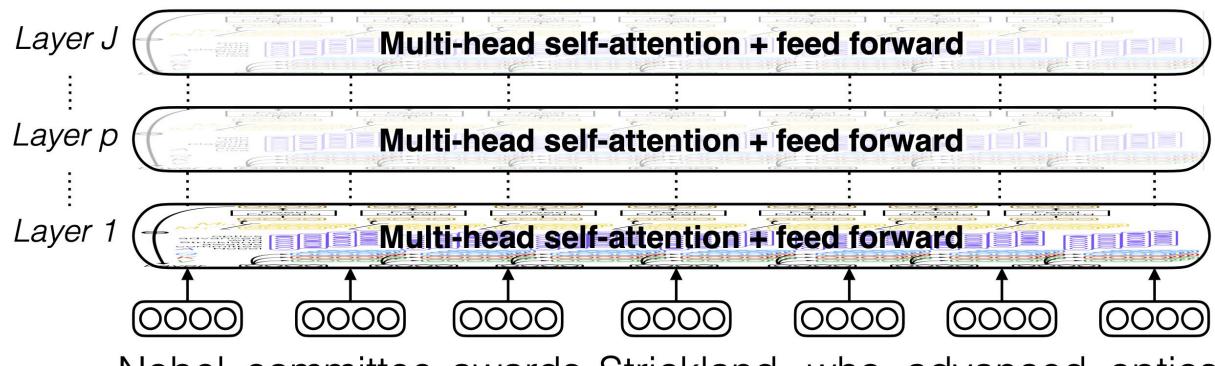






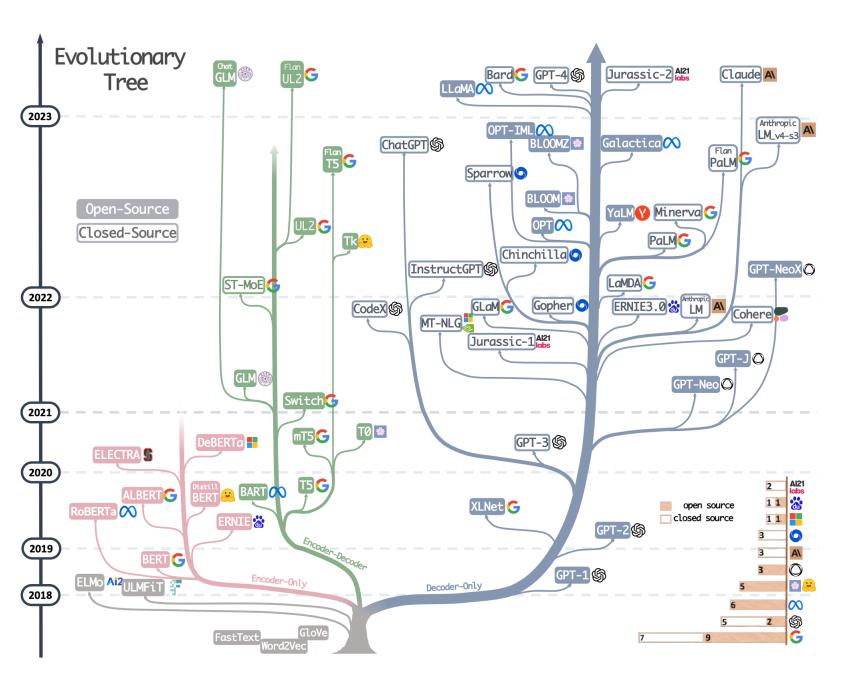


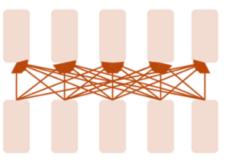




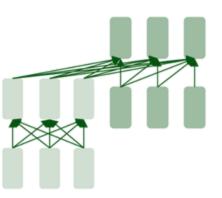
Nobel committee awards Strickland who advanced optics

Model structure

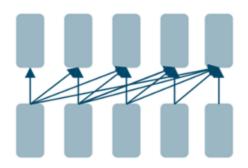




Encoder

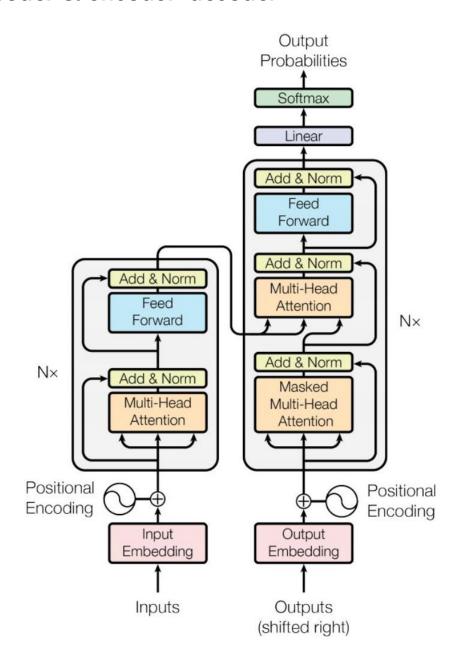


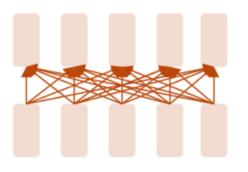
Encoder-Decoder



Decoder

Eecoder & encoder-decoder





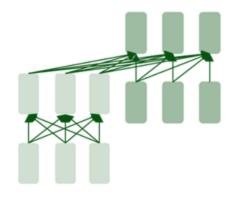
encoder

Trained by predicting words from surrounding words on both sides.

good: Strong comprehension ability.

bad: Limited generation ability.

Application: Discrimination task



encoder-decoder

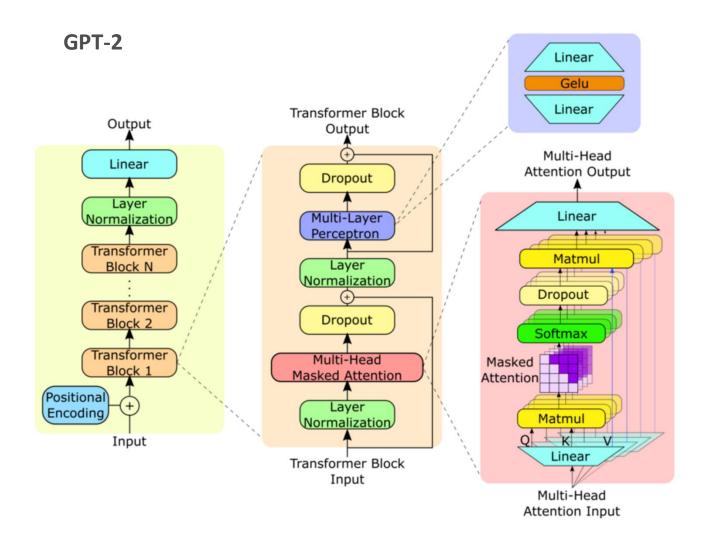
Trained to map from one sequence to another

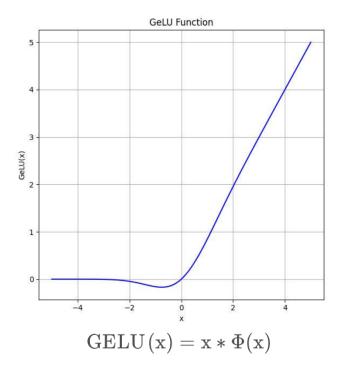
good: good at both comprehension and generation

bad: Hard and expensive to train

Application: Translation task

Decoder



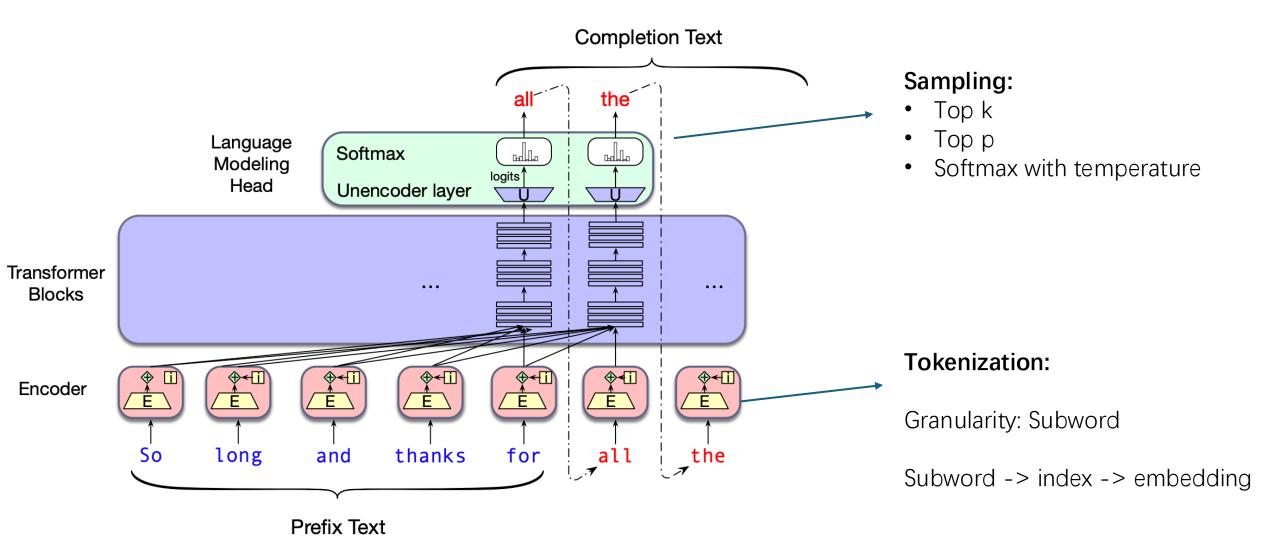


Predict from left to right

Good at generation

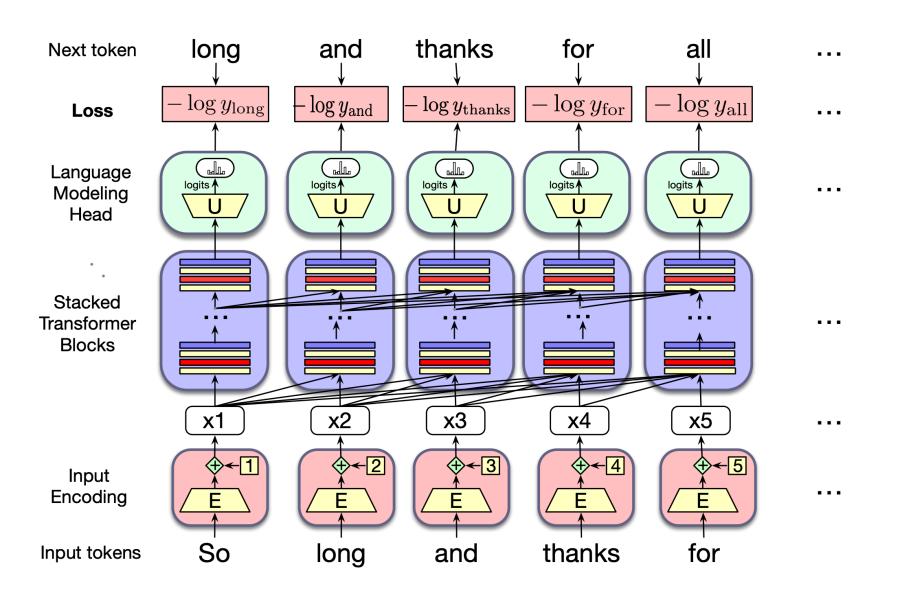
Easy for scaling up!

Decoder



Pre-training & IT & RLHF

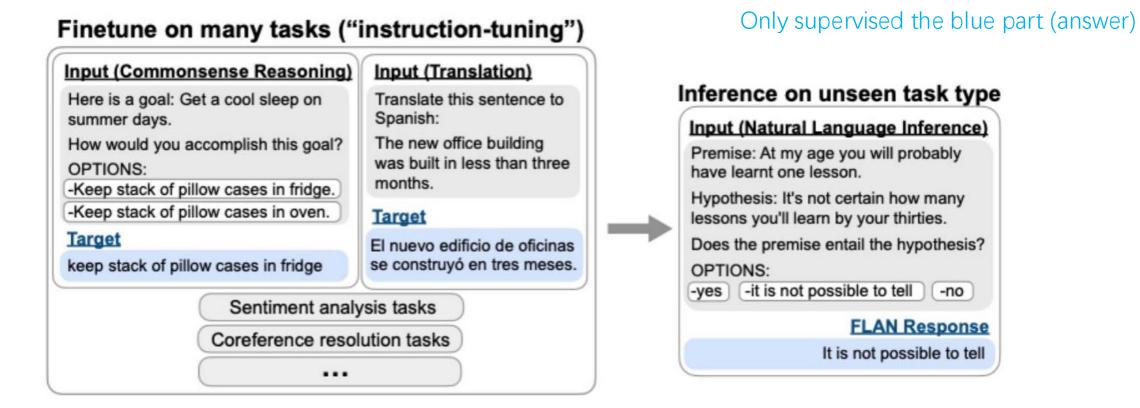
Pre-training



- Train to predict the next token (self-supervised training)
- Large-scale corpora from the internet
- Cross-entropy loss
- Good generalist auto-completes

Task specifical?
In context learning ~

Instruction-tuning



- Input and Target: Instruction + input as input with the target in SFT
- Objective function: Loss computed only for target tokens in SFT
- Purpose : good SFT builds models that can do many unseen tasks

Expensive data labeling...

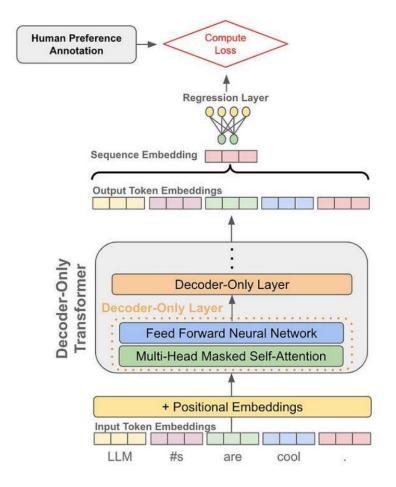
Not optimal answer for human ···

Reinforce learning with human feedback

LLMs may produce text that can cause direct harm – allowing easy access to dangerous information. Therefore, LLMs should be trained to produce outputs that align with human preferences and values.

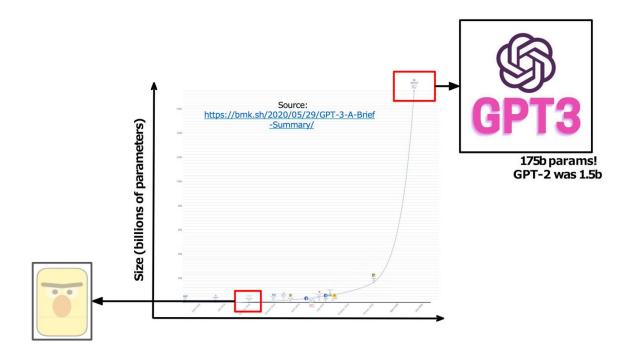
Collect comparison data, Optimize a policy against and train a reward model. the reward model using reinforcement learning. A prompt and A new prompt is sampled from several model Explain the moon Write a story outputs are the dataset. landing to a 6 year old about frogs sampled. The policy Explain gravity. Explain war... generates 0 Moon is natural People went to an output. satellite of... A labeler ranks Once upon a time.. the outputs from best to worst. The reward model calculates a reward for This data is used the output. to train our reward model. The reward is used to update the policy using PPO.

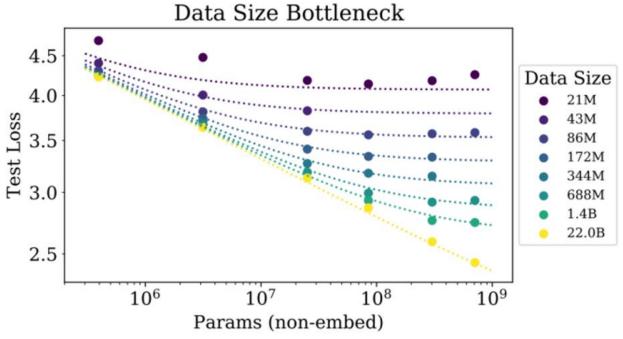
Reward Model Structure



Scaling

Scaling up



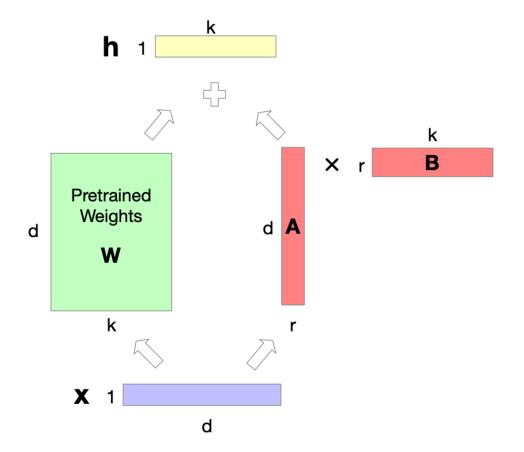


O GPT-3 trained on text can do arithmetic problems like addition and subtraction

O Different abilities "emerge" at different scales

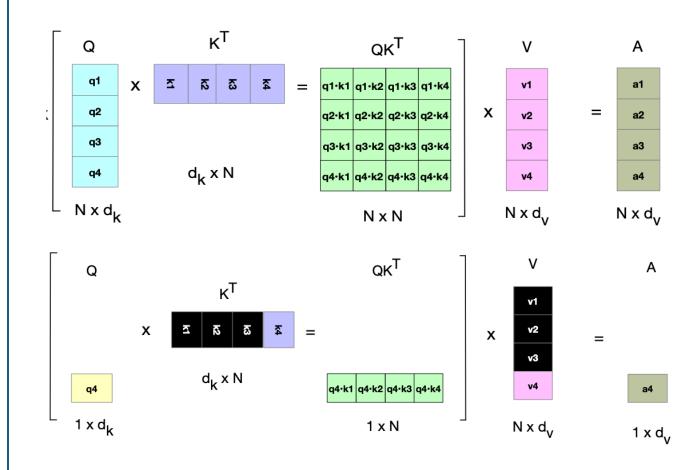
Larger means stronger

Parameter-Efficient Finetuning (PEFT)



Keep dense projection matrix frozen, update the low rank matrix

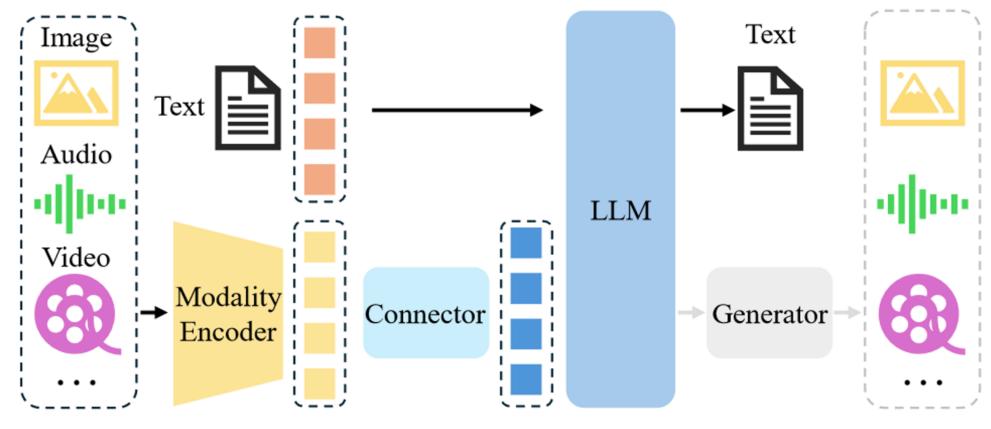
KV Cache



Avoid recompute the past keys and values during inference

Multi Modal LLM

Multi Modal LLM



Four main components

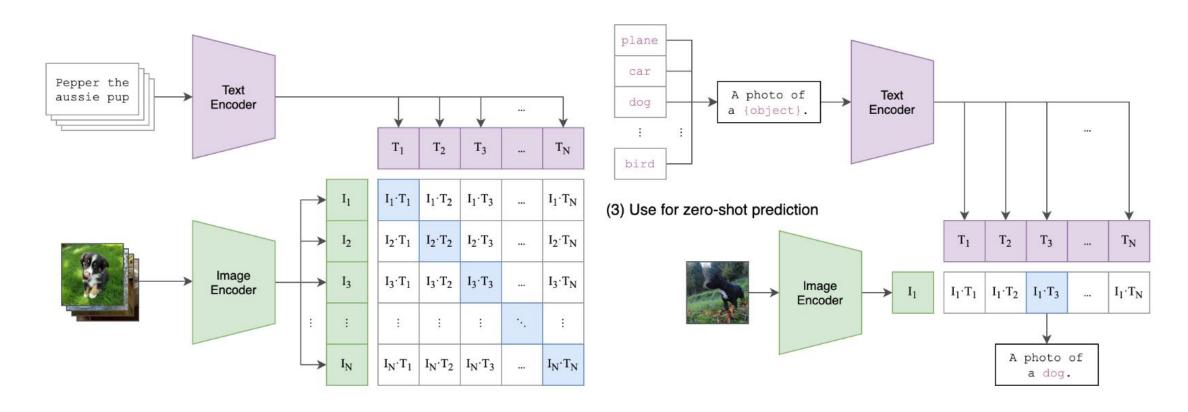
(1) multimodal encoder

(2) connector

(3) large language model

(4) multimodal generator

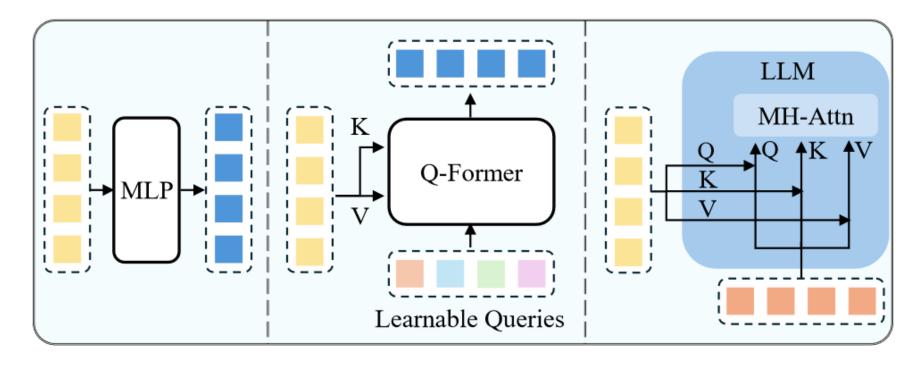
Multimodal Encoder



Key factor:

- 1. Encoder parameter number
- 2. Pretrained dataset size
- 3. Resolution ratio

Connector

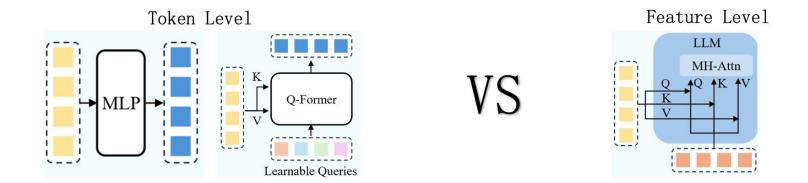


The role of connectors is to integrate multimodal information, which can be divided into token-level and feature-level based on the fusion hierarchy.

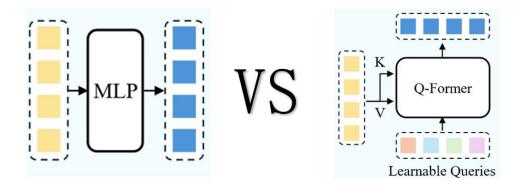
Three mainstream connectors are:

MLP (token-level), Q-Former (token-level), and multi-head attention (feature-level).

Connector



Token-level performs better in VQA benchmark tests (VQA: Visual Question Answering)

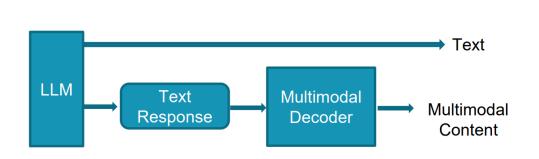


The type of the connector is far less important than the number of visual tokens and the input resolution.

Multimodal Generator

There are two implementation methods for the multimodal decoder:

- (1) Using the text output as the input.
- (2) Using the embeddings corresponding to specific tokens as the input.

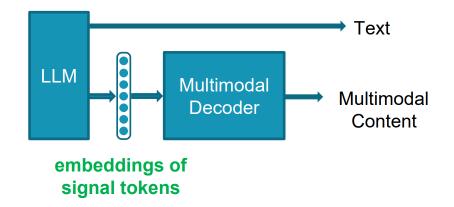


Advantages:

- •Efficient, no need to fine-tune the Large Language Model (LLM).
- •High lower limit of performance.

Disadvantages:

- •Lack the ability of end-to-end fine-tuning.
- •Low upper limit of performance, and some multimodal tasks cannot be translated into text.



Characteristics:

It can be fine-tuned in an end-to-end manner. It has a high upper limit of performance and can convey information that cannot be carried by text, such as: visual spatial relationships.

LLM generate image?

